RDBMS NoSQL その他データベース DWH ETL EAI/ESB

社内のビッグデータ整理に適用する3つのベストプラクティス

ビッグデータのサイズの違いを理解すれば、ストレージ容量と演算能力に対するIT投資の内容が決めやすくなるだろう。

 ビッグデータはサイズが膨大なため、企業のIT担当者はデータを分類して配信したり、不要なデータを削除したりする方法を見出す必要がある。既存のITプラクティスでもビッグデータ管理に適用可能なものは数多いが、ビッグデータと従来のトランザクショナルデータには無視できない違いが存在する。

 もっとも顕著な相違は、データの構造だ。従来型トランザクショナルデータが特別な処理なしで容易にデータ管理できるよう固定長レコードで構造化されているのに対し、ビッグデータにはあらゆる形式とサイズのデータが含まれる。

ビッグデータのサイズの違いを理解する

残り本文:約1674文字 ログインして続きを読んでください。

あなたにおすすめの記事

関連記事

ホワイトペーパーランキング

  1. マンガで解説、移行済みの担当者にも役立つ! Windows10移行&運用ガイド
  2. 家庭向けIoT製品の普及とともに拡大するセキュリティとプライバシー問題─解決策を知ろう
  3. 顧客を知り、顧客に合わせるのに欠かせない「NPS」を知っていますか?
  4. 多様化するリーガルテック市場の日米動向と現在の企業が抱える契約課題における解決策とは
  5. IoTにはこれだけのサイバー攻撃リスクが!まずはベストプラクティスの習得を

編集部おすすめ

トレンドまるわかり![PR]

サーバ
PC・モバイル
ストレージ
ネットワーク
仮想化
クラウドサービス
OS・ミドルウェア
開発
データベース
RDBMS
NoSQL
その他データベース
DWH
ETL
EAI/ESB
運用
セキュリティ
新興技術
財務・経理
人事・労務
マーケ・営業
購買・調達
生産・製造
データ分析
コミュニケーション
通信・通話
文書・コンテンツ
サイト構築
PCソフト
学習

ベンダー座談会

Follow TechRepublic Japan

このサイトでは、利用状況の把握や広告配信などのために、Cookieなどを使用してアクセスデータを取得・利用しています。 これ以降ページを遷移した場合、Cookieなどの設定や使用に同意したことになります。
Cookieなどの設定や使用の詳細、オプトアウトについては詳細をご覧ください。
[ 閉じる ]